If it's not what You are looking for type in the equation solver your own equation and let us solve it.
r^2-4r-24=0
a = 1; b = -4; c = -24;
Δ = b2-4ac
Δ = -42-4·1·(-24)
Δ = 112
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{112}=\sqrt{16*7}=\sqrt{16}*\sqrt{7}=4\sqrt{7}$$r_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-4\sqrt{7}}{2*1}=\frac{4-4\sqrt{7}}{2} $$r_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+4\sqrt{7}}{2*1}=\frac{4+4\sqrt{7}}{2} $
| (8x-22)=5x+29 | | 100x=0.001 | | 4^x=60 | | 4x=-8/75 | | ½x-6=12 | | 16(y+1)=16 | | (3x+2)+(4x-11)=180 | | 2x-5=x+8=x+6 | | D=40t+60t | | 9n+3n=-24 | | (6-t^2)/(6+t^2)^2=0 | | 12x^2-176x+405=0 | | (1/2x)+(31/4x+4)+(21/2x-10)=180 | | 5e=14|2e | | 3x^2-x=x+1 | | -86-10x=-6x+26 | | (1/2x)+(31/4x4)+(21/2x-10)=180 | | 2y+3.5=120 | | -111-x=10x+186 | | 4-2x=6x-20 | | 19w+1=20 | | 18x+9-2x=-2 | | 2(w+8)=18 | | 224=x-75 | | 7y+19=82 | | 12x-21=10x+41 | | -9k+5k=-28 | | 3x-5+2=x-9=193 | | 6s+11=17 | | 8=11p+10p | | 10=3w+8 | | 8p+9=17 |